Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NMR Biomed ; 37(4): e5086, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38110293

RESUMO

Fluorine MRI is finding wider acceptance in theranostics applications where imaging of 19 F hotspots of fluorinated contrast material is central. The essence of such applications is to capture ghosting-artifact-free images of the inherently low MR response under clinically viable conditions. To serve this purpose, this work introduces the balanced spiral spectroscopic imaging (BaSSI) sequence, which is implemented on a 3.0 T clinical scanner and is capable of generating 19 F hotspot images in an efficient manner. The sequence utilizes an all-phase-encoded pseudo-spiral k-space trajectory, enabling the acquisition of broadband (80 ppm) fluorine spectra free from chemical shift ghosting. BaSSI can acquire a 64 × 64 image with 1 mm × 1 mm voxels in just 14 s, significantly outperforming typical MRSI sequences used in 1 H or 31 P imaging. The study employed in silico characterization to verify essential design choices such as the excitation pulse, as well as to identify the boundaries of the parameter space explored for optimization. BaSSI's performance was further benchmarked against the 3D ultrashort-echo-time balanced steady-state free precession (3D UTE BSSFP) sequence, a well established method used in 19 F MRI, in vitro. Both sequences underwent extensive optimization through exploration of a wide parameter space on a small phantom containing 10 µL of non-diluted bulk perfluorooctylbromide (PFOB) prior to comparative experiments. Subsequent to optimization, BaSSI and 3D UTE BSSFP were employed to capture images of small non-diluted bulk PFOB samples (0.10 and 0.05 µL), with variations in the number of signal averages, and thus the total scan time, in order to assess the detection sensitivities of the sequences. In these experiments, the detection sensitivity was evaluated using the Rose criterion (Rc ), which provides a quantitative metric for assessing object visibility. The study further demonstrated BaSSI's utility as a (pre)clinical tool through postmortem imaging of polymer microspheres filled with PFOB in a BALB/c mouse. Anatomic localization of 19 F hotspots was achieved by denoising raw data obtained with BaSSI using a filter based on the Rose criterion. These data were then successfully registered to 1 H anatomical images. BaSSI demonstrated superior detection sensitivity in the benchmarking analysis, achieving Rc values approximately twice as high as those obtained with the 3D UTE BSSFP method. The technique successfully facilitated imaging and precise localization of 19 F hotspots in postmortem experiments. However, it is important to highlight that imaging 10 mM PFOB in small mice postmortem, utilizing a 48 × 48 × 48 3D scan, demanded a substantial scan time of 1 h and 45 min. Further studies will explore accelerated imaging techniques, such as compressed sensing, to enhance BaSSI's clinical utility.


Assuntos
Fluorocarbonos , Hidrocarbonetos Bromados , Camundongos , Animais , Flúor , Imageamento por Ressonância Magnética/métodos , Imageamento Tridimensional/métodos
2.
Sci Rep ; 13(1): 22178, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092810

RESUMO

Percutaneous drainage is a first-line therapy for abscesses and other fluid collections. However, experimental data on the viscosity of body fluids are scarce. This study analyses the apparent viscosity of serous, purulent and biliary fluids to provide reference data for the evaluation of drainage catheters. Serous, purulent and biliary fluid samples were collected during routine drainage procedures. In a first setup, the apparent kinematic viscosity of 50 fluid samples was measured using an Ubbelohde viscometer. In a second setup, the apparent dynamic viscosity of 20 fluid samples obtained during CT-guided percutaneous drainage was measured using an in-house designed capillary extrusion experiment. The median apparent kinematic viscosity was 0.96 mm2/s (IQR 0.90-1.15 mm2/s) for serous samples, 0.98 mm2/s (IQR 0.97-0.99 mm2/s) for purulent samples and 2.77 mm2/s (IQR 1.75-3.70 mm2/s) for biliary samples. The median apparent dynamic viscosity was 1.63 mPa*s (IQR 1.27-2.09 mPa*s) for serous samples, 2.45 mPa*s (IQR 1.69-3.22 mPa*s) for purulent samples and 3.50 mPa*s (IQR 2.81-3.90 mPa*s) for biliary samples (all differences p < 0.01). Relative to water, dynamic viscosities were increased by a factor of 1.36 for serous fluids, 2.26 for purulent fluids, and 4.03 for biliary fluids. Serous fluids have apparent viscosities similar to water, but biliary and purulent fluids are more viscous. These data can be used as a reference when selecting the drainage catheter size, with 8F catheters being appropriate for most percutaneous drainage cases.


Assuntos
Abscesso , Drenagem , Humanos , Viscosidade , Drenagem/métodos , Abscesso/terapia , Cateteres , Água
3.
Chemistry ; 28(33): e202200300, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35412692

RESUMO

The structure of an isolated Ag+ (benzylamine) complex is investigated by infrared multiple photon dissociation (IRMPD) spectroscopy complemented with quantum chemical calculations of candidate geometries and their vibrational spectra, aiming to ascertain the role of competing cation-N and cation-π interactions potentially offered by the polyfunctional ligand. The IRMPD spectrum has been recorded in the 800-1800 cm-1 fingerprint range using the IR free electron laser beamline coupled with an FT-ICR mass spectrometer at the Centre Laser Infrarouge d'Orsay (CLIO). The resulting IRMPD pattern points toward a chelate coordination (N-Ag+ -π) involving both the amino nitrogen atom and the aromatic π-system of the phenyl ring. The gas-phase reactivity of Ag+ (benzylamine) with a neutral molecular ligand (L) possessing either an amino/aza functionality or an aryl group confirms N- and π-binding affinity and suggests an augmented silver coordination in the product adduct ion Ag + ( benzylamine ) ( L ) .


Assuntos
Benzilaminas , Prata , Cátions/química , Ligantes , Prata/química , Espectrofotometria Infravermelho/métodos
4.
Eur J Med Chem ; 237: 114383, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35447431

RESUMO

Recently, a protocol for radiolabeling of aryl fluorosulfates ("SuFEx click radiolabeling") using ultrafast 18F/19F isotopic exchange has been reported. Although promising, the original procedure turned out to be rather inefficient. However, systematic optimization of the reaction parameters allowed for development of a robust method for SuFEx radiolabeling which obviates the need for azeotropic drying, base addition and HPLC purification. The developed protocol enabled efficient 18F-fluorination of low nanomolar amounts of aryl fluorosulfates in highly diluted solution (micromolar concentrations). It was successfully used to prepare a series of 29 18F-fluorosulfurylated phenols - including modified ezetimibe, α-tocopherol and etoposide, the two tyrosine derivatives Boc-Tyr([18F]FS)-OMe and H-Tyr([18F]FS)-OMe, the FAP-specific ligand [18F]FS-UAMC1110, and the DPA-714 analog [18F]FS-DPA - in fair to excellent yields. Preliminary evaluation demonstrated sufficient in vivo stability of radiofluorinated electron rich or neutral {Boc-Tyr([18F]FS)-OMe), H-Tyr([18F]FS)-OMe and [18F]FS-DPA} aryl fluorosulfates. Furthermore, [18F]FS-DPA was identified as a promising tracer for visualization of TSPO expression.


Assuntos
Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Radioisótopos de Flúor/metabolismo , Radioisótopos de Flúor/farmacologia , Halogenação , Ligantes , Nanoestruturas , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/metabolismo , Compostos Radiofarmacêuticos/farmacologia
5.
Biomater Sci ; 9(13): 4717-4727, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34032225

RESUMO

Surface modification of nanocarriers enables selective attachment to specific molecular targets within a complex biological environment. Besides the enhanced uptake due to specific interactions, the surface ligands can be utilized for radiolabeling applications for bimodal imaging ensured by positron emission topography (PET) and magnetic resonance imaging (MRI) functions in one source. Herein, we describe the surface functionalization of magnetite (Fe3O4) with folic acid as a target vector. Additionally, the magnetic nanocarriers were conjugated with appropriate ligands for subsequent copper-catalyzed azide-alkyne cycloaddition or carbodiimide coupling reactions to successfully achieve radiolabeling with the PET-emitter 18F. The phase composition (XRD) and size analysis (TEM) confirmed the formation of Fe3O4 nanoparticles (6.82 nm ± 0.52 nm). The quantification of various surface functionalities was performed by Fourier-transform infrared spectroscopy (FT-IR) and ultraviolet-visible microscopy (UV-Vis). An innovative magnetic-HPLC method was developed in this work for the determination of the radiochemical yield of the 18F-labeled NPs. The as-prepared Fe3O4 particles demonstrated high radiochemical yields and showed high cellular uptake in a folate receptor overexpressing MCF-7 cell line, validating bimodal imaging chemical design and a magnetic HPLC system. This novel approach, combining folic acid-capped Fe3O4 nanocarriers as a targeting vector with 18F labeling, is promising to apply this probe for bimodal PET/MR-studies.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Ácido Fólico , Humanos , Células MCF-7 , Imageamento por Ressonância Magnética , Magnetismo , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Langmuir ; 36(6): 1552-1558, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-31968173

RESUMO

We demonstrate here a controlled assembly of individual nanoscale building blocks into defined architectures based on chemospecific covalent bonding interactions. For this purpose, α-Fe2O3, γ-Fe2O3, and SiO2 nanoparticles decorated with surface-conjugated organic ligands were used for performing on-surface Diels-Alder reactions. Driven through their chemical affinity and surface-grafted complementary functionalities, nanoparticles underwent click-reactions to produce covalently organized nanostructures. An advantage of using the Diels-Alder reaction is its reversible nature, which was used to click and unclick the nanoparticles on demand. The efficiency and chemical specificity of this approach opens up another synthetic access to unify materials with complementary properties, where the thermoresponsive nature of particle assemblies imparts to them a fully reversible character. The covalent conjugation strategies demonstrated in this work potentially allow the use of a diverse range of particles and ligands for their applications in different disciplines such as medicine, optics, or photonics. The nanoparticles morphology and crystalline nature were investigated by TEM and XRD analysis, while the presence of surface attached groups was verified by NMR, FTIR, UV-vis, and ζ potential measurements.

7.
ACS Appl Mater Interfaces ; 11(28): 25163-25169, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31265229

RESUMO

Thin-film organic-inorganic hybrid perovskite (MeNH3PbI3) solar cells have displayed remarkably high photoconversion efficiencies, making their net-shaping as flexible device elements desirable for a number of applications. Simulations show greatly enhanced light absorption in perovskite fibers in comparison to their thin-film counterparts, which demand the processing of hybrid perovskites in the one-dimensional morphology. We report here on the single-step fabrication of MeNH3PbI3 nanofibers on a customized electrospinning process performed under inert conditions. Our results demonstrate reproducible synthesis of electrospun fiber mats in which the fiber dimensions were tailored by adjusting the polymer (PVP) content. Photoluminescence studies on the perovskite fibers revealed a blue shift of the emission peak possibly due to strain or charge confinement effects. The hybrid perovskite nanofibers offer promising applications in flexible and stretchable optoelectronics.

8.
Phys Chem Chem Phys ; 19(5): 3970-3986, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28106189

RESUMO

The solvation of aromatic (bio-)molecular building blocks has a strong impact on the intermolecular interactions and function of supramolecular assemblies, proteins, and DNA. Herein we characterize the initial microsolvation process of the heterocyclic aromatic pyrrole cation (Py+) in its 2A2 ground electronic state with nonpolar, quadrupolar, and dipolar ligands (L = Ar, N2, and H2O) by infrared photodissociation (IRPD) spectroscopy of cold mass-selected Py+-Ln (n ≤ 3) clusters in a molecular beam and dispersion-corrected density functional theory calculations at the B3LYP-D3/aug-cc-pVTZ level. Size- and isomer-specific shifts in the NH stretch frequency (ΔνNH) unravel the competition between various ligand binding sites, the strength of the respective intermolecular bonds, and the cluster growth. In Py+-Ar, linear H-bonding of Ar to the acidic NH group (NHAr) is competitive with π-stacking to the aromatic ring, and both Py+-Ar(H) and Py+-Ar(π) are observed. For L = N2 and H2O, the linear NHL H-bond is much more stable than any other binding site and the only observed binding motif. For the Py+-Ar2 and Py+-(N2)2 trimers, the H/π isomer with one H-bonded and one π-bonded ligand strongly competes with a 2H isomer with two bifurcated nonlinear NHL bonds. The latter are equivalent for Ar but nonequivalent for N2. Py+-H2O exhibits a strong and linear NHO H-bond with charge-dipole configuration and C2v symmetry. IRPD spectra of cold Py+-H2O-L clusters with L = Ar and N2 reveal that Ar prefers π-stacking to the Py+ ring, while N2 forms an OHN2 H-bond to the H2O ligand. The ΔνNH frequency shifts in Py+-Ln are correlated with the strength of the NHL H-bond and the proton affinity (PA) of L, and a monotonic correlation between ΔνNH of the Py+-L(H) dimers and PA is established. Comparison with neutral Py-L dimers reveals the strong impact of the positive charge on the acidity of the NH group, the strength of the NHL H-bond, and the preferred ligand binding motif.

9.
Phys Chem Chem Phys ; 18(38): 26980-26989, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27722329

RESUMO

Halogenation of pharmaceutical molecules is a common tool to modify their physiological properties. The geometric, vibrational, and electronic properties of the ortho-fluorinated protonated neurotransmitter 2-phenylethylamine (oF-H+PEA) are characterized by infrared photodissociation (IRPD) spectroscopy in the NH stretch range using the messenger technique and dispersion-corrected density functional theory calculations at the B3LYP-D3/aug-cc-pVTZ level to elucidate the drastic effect of site-specific ortho-fluorination. The IRPD spectra of cold oF-H+PEA-Rg dimers (Rg = Ne, Ar) are assigned to the most stable gauche conformer (Gf1) of oF-H+PEA, which benefits from both NH+π and NH+F interactions. A minor contribution (∼5%) of the slightly less stable Gf2 gauche conformer (E0 = +1.1 kJ mol-1) is also identified. Comparison of oF-H+PEA with unsubstituted H+PEA reveals a much stronger NH+π interaction in H+PEA resulting in a large red shift of the bonded NH stretch frequency. This behavior is confirmed by natural bond orbital (NBO) analysis and noncovalent interaction (NCI) calculations. The Rg ligand prefers a binding site at which it can maximize the interaction with the aromatic π electron system and the ammonium group. Although the intermolecular interactions with the Rg atoms can compete with the noncovalent intramolecular bonds, they induce only minor spectral shifts in the NH stretch range.

10.
Phys Chem Chem Phys ; 18(35): 24746-54, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27550720

RESUMO

The ionization-induced π↔ H site switching reaction in phenol(+)-Rg (PhOH(+)-Rg) dimers with Rg = Ar and Kr is traced in real time by picosecond time-resolved infrared (ps-TRIR) spectroscopy. The ps-TRIR spectra show the prompt appearance of the non-vanishing free OH stretching band upon resonant photoionization of the π-bound neutral clusters, and the delayed appearance of the hydrogen-bonded (H-bonded) OH stretching band. This result directly proves that the Rg ligand switches from the π-bound site on the aromatic ring to the H-bonded site at the OH group by ionization. The subsequent H →π back reaction converges the dimer to a π↔ H equilibrium. This result is in sharp contrast to the single-step π→ H forward reaction in the PhOH(+)-Ar2 trimer with 100% yield. The reaction mechanism and yield strongly depend on intracluster vibrational energy redistribution. A classical rate equation analysis for the time evolutions of the band intensities of the two vibrations results in similar estimates for the time constants of the π→ H forward reaction of τ+ = 122 and 73 ps and the H →π back reaction of τ- = 155 and 188 ps for PhOH(+)-Ar and PhOH(+)-Kr, respectively. The one order of magnitude slower time constant in comparison to the PhOH(+)-Ar2 trimer (τ+ = 7 ps) is attributed to the decrease in density of states due to the absence of the second Ar in the dimer. The similar time constants for both PhOH(+)-Rg dimers are well rationalized by a classical interpretation based on the comparable potential energy surfaces, reaction pathways, and density of states arising from their similar intermolecular vibrational frequencies.

11.
Chemistry ; 22(24): 8124-36, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27210899

RESUMO

Fluorination of pharmaceutical compounds is a common tool to modulate their physiochemical properties. We determine the effects of site-specific aromatic fluorine substitution on the geometric, energetic, vibrational, and electronic properties of the protonated neurotransmitter 2-phenylethylamine (xF-H(+) PEA, x=ortho, meta, para) by infrared multiphoton photodissociation (IRMPD) in the fingerprint range (600-1750 cm(-1) ) and quantum chemical calculations at the B3LYP-D3/aug-cc-pVTZ level. The IRMPD spectra of all ions are assigned to their folded gauche conformers stabilized by intramolecular NH(+) ⋅⋅⋅π hydrogen bonds (H-bonds) between the protonated amino group and the aromatic ring. H→F substitution reduces the symmetry and allows for additional NH(+) ⋅⋅⋅F interactions in oF-H(+) PEA, leading to three distinct gauche conformers. In comparison to oF-H(+) PEA, the fluorination effects on the energy landscape (energy ordering and isomerization barriers) in pF-H(+) PEA and mF-H(+) PEA with one and two gauche conformers are less pronounced. The strengths of the intramolecular NH(+) ⋅⋅⋅F and NH(+) ⋅⋅⋅π bonds are analyzed by the noncovalent interaction (NCI) method.


Assuntos
Flúor/química , Neurotransmissores/química , Fenetilaminas/química , Ligação de Hidrogênio , Isomerismo , Espectrometria de Massas , Conformação Molecular , Prótons , Teoria Quântica , Termodinâmica
12.
Chemphyschem ; 17(2): 232-43, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26584245

RESUMO

Hydration has a drastic impact on the structure and function of flexible biomolecules, such as aromatic ethylamino neurotransmitters. The structure of monohydrated protonated phenylethylamine (H(+) PEA-H2 O) is investigated by infrared photodissociation (IRPD) spectroscopy of cold cluster ions by using rare-gas (Rg=Ne and Ar) tagging and dispersion-corrected density functional theory calculations at the B3LYP-D3/aug-cc-pVTZ level. Monohydration of this prototypical neurotransmitter gives an insight into the first step of the formation of its solvation shell, especially regarding the competition between intra- and intermolecular interactions. The spectra of Rg-tagged H(+) PEA-H2 O reveal the presence of a stable insertion structure in which the water molecule is located between the positively charged ammonium group and the phenyl ring of H(+) PEA, acting both as a hydrogen bond acceptor (NH(+) ⋅⋅⋅O) and donor (OH⋅⋅⋅π). Two other nearly equivalent isomers, in which water is externally H bonded to one of the free NH groups, are also identified. The balance between insertion and external hydration strongly depends on temperature.


Assuntos
Neurotransmissores/química , Fenetilaminas/química , Água/química , Prótons , Teoria Quântica , Espectrofotometria Infravermelho
13.
Phys Chem Chem Phys ; 18(2): 1191-201, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26660487

RESUMO

Vibronic and vibrational spectra of 2-(2-fluoro-phenyl)-ethylamine (2-FPEA) conformers were measured in a molecular beam by resonant two-photon ionization (R2PI), ultraviolet-ultraviolet hole burning (UV-UV HB) spectroscopy, and ionization-loss stimulated Raman spectroscopy (ILSRS). The measured ILSR spectral signatures in the survey spectra of the amino group region and in the broad spectral range revealed the presence of five different conformers, which were confirmed by the HB spectra. The determination of the structures of the conformers of 2-FPEA was assisted by quantum chemical calculations of the torsional potential energy surface and of the scaled harmonic Raman spectra. Comparison of the measured ILSR spectra with the calculated Raman spectra allowed us to identify one gauche structure with the ethylamino side chain folded toward the fluorine atom, two gauche structures with the ethylamino side chain folded to the opposite side and two anti conformers with extended tails. The effect of fluorination on the spectra and on the stability and structures of these species is discussed.

14.
J Phys Chem A ; 119(39): 10035-51, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26353045

RESUMO

Solvation of biomolecules by a hydrophilic and hydrophobic environment strongly affects their structure and function. Here, the structural, vibrational, and energetic properties of size-selected clusters of the microhydrated tryptamine cation with N2 ligands, TRA(+)-(H2O)m-(N2)n (m,n ≤ 3), are characterized by infrared photodissociation spectroscopy in the 2800-3800 cm(-1) range and dispersion-corrected density functional theory calculations at the ωB97X-D/cc-pVTZ level to investigate the simultaneous solvation of this prototypical neurotransmitter by dipolar water and quadrupolar N2 ligands. In the global minimum structure of TRA(+)-H2O generated by electron ionization, H2O is strongly hydrogen-bonded (H-bonded) as proton acceptor to the acidic indolic NH group. In the TRA(+)-H2O-(N2)n clusters, the weakly bonded N2 ligands do not affect the H-bonding motif of TRA(+)-H2O and are preferentially H-bonded to the OH groups of the H2O ligand, whereas stacking to the aromatic π electron system of the pyrrole ring of TRA(+) is less favorable. The natural bond orbital analysis reveals that the H-bond between the N2 ligand and the OH group of H2O cooperatively strengthens the adjacent H-bond between the indolic NH group of TRA(+) and H2O, while π stacking is slightly noncooperative. In the larger TRA(+)-(H2O)m clusters, the H2O ligands form a H-bonded solvent network attached to the indolic NH proton, again stabilized by strong cooperative effects arising from the nearby positive charge. Comparison with the corresponding neutral TRA-(H2O)m clusters illustrates the strong impact of the excess positive charge on the structure of the microhydration network.


Assuntos
Etilaminas/química , Neurotransmissores/química , Nitrogênio/química , Solventes/química , Triptaminas/química , Água/química , Cátions , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Solubilidade , Espectrofotometria Infravermelho
15.
Phys Chem Chem Phys ; 17(39): 25742-54, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25757357

RESUMO

The structure and dynamics of the highly flexible side chain of (protonated) phenylethylamino neurotransmitters are essential for their function. The geometric, vibrational, and energetic properties of the protonated neutrotransmitter 2-phenylethylamine (H(+)PEA) are characterized in the N-H stretch range by infrared photodissociation (IRPD) spectroscopy of cold ions using rare gas tagging (Rg = Ne and Ar) and anharmonic calculations at the B3LYP-D3/(aug-)cc-pVTZ level including dispersion corrections. A single folded gauche conformer (G) protonated at the basic amino group and stabilized by an intramolecular NH(+)-π interaction is observed. The dispersion-corrected density functional theory calculations reveal the important effects of dispersion on the cation-π interaction and the large vibrational anharmonicity of the NH3(+) group involved in the NH(+)-π hydrogen bond. They allow for assigning overtone and combination bands and explain anomalous intensities observed in previous IR multiple-photon dissociation spectra. Comparison with neutral PEA reveals the large effects of protonation on the geometric and electronic structure.


Assuntos
Neurotransmissores/química , Fenetilaminas/química , Prótons , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Espectrofotometria Infravermelho
16.
J Phys Chem A ; 118(34): 7130-8, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25061749

RESUMO

Phenylalkylamines of the general formula C6H5(CH2)nNH2 (n = 1-4) have been delivered to the gas phase as protonated species using electrospray ionization. The ions thus formed have been assayed by IRMPD spectroscopy in two different spectroscopic domains, namely, the 600-1800 and the 3000-3500 cm(-1) regions using either an IR free electron laser or a tabletop OPO/OPA laser source. The interpretation of the experimental spectra is aided by density functional theory calculations of candidate species and vibrational frequency analyses. Protonated benzylamine presents a relatively straightforward instance of a single stable conformer, providing a trial case for the adopted approach. Turning to the higher homologues, C6H5(CH2)nNH3(+) (n = 2-4), more conformations become accessible. For each C6H5(CH2)nNH3(+) ion (n = 2-4), the most stable geometry is characterized by cation-π interactions between the positively charged ammonium group and the aromatic π-electronic system, permitted by the folding of the polymethylene chain. The IRMPD spectra of the sampled ions confirm the presence of the folded structures by comparison with the calculated IR spectra of the various possible conformers. An inspection of the NH stretching region is helpful in this regard.


Assuntos
Compostos de Anilina/química , Cátions/química , Benzilaminas/química , Simulação por Computador , Ligação de Hidrogênio , Modelos Químicos , Prótons , Espectrofotometria Infravermelho/instrumentação , Espectrofotometria Infravermelho/métodos , Vibração
17.
Phys Chem Chem Phys ; 16(17): 7980-95, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24647474

RESUMO

Infrared photodissociation (IRPD) spectra of mass-selected cluster ions of acetanilide (N-phenylacetamide), AA(+)-Ln, with the ligands L = He (n = 1-2), Ar (n = 1-7), and N2 (n = 1-10) are recorded in the hydride stretch (amide A, νNH, νCH) and fingerprint (amide I-III) ranges of AA(+) in its (2)A'' ground electronic state. Cold AA(+)-Ln clusters are generated in an electron impact ion source, which predominantly produces the most stable isomer of a given cluster ion. Systematic vibrational frequency shifts of the N-H stretch fundamentals (νNH) provide detailed information about the sequential microsolvation process of AA(+) in a nonpolar (L = He and Ar) and quadrupolar (L = N2) solvent. In the most stable AA(+)-Ln clusters, the first ligand forms a hydrogen bond (H-bond) with the N-H proton of trans-AA(+) (t-AA(+)), whereas further ligands bind weakly to the aromatic ring (π-stacking). There is no experimental evidence for complexes with the less stable cis-AA(+) isomer. Quantum chemical calculations at the M06-2X/aug-cc-pVTZ level confirm the cluster growth sequence derived from the IR spectra. The calculated binding energies of De(H) = 720 and 1227 cm(-1) for H-bonded and De(π) = 585 and 715 cm(-1) for π-bonded Ar and N2 ligands in t-AA(+)-L are consistent with the observed photofragmentation branching ratios of AA(+)-Ln. Comparison between charged and neutral AA((+))-L dimers indicates that ionization switches the preferred ion-ligand binding motif from π-stacking to H-bonding. Electron removal from the HOMO of AA(+) delocalized over both the aromatic ring and the amide group significantly strengthens the C[double bond, length as m-dash]O bond and weakens the N-H bond of the amide group.


Assuntos
Acetanilidas/química , Argônio/química , Hélio/química , Nitrogênio/química , Cátions/química , Ligação de Hidrogênio , Isomerismo , Modelos Moleculares , Teoria Quântica , Solventes/química , Espectrofotometria Infravermelho
18.
Phys Chem Chem Phys ; 16(8): 3798-806, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24429940

RESUMO

Size-selected clusters of the tryptamine cation with N2 ligands, TRA(+)-(N2)n with n = 1-6, are investigated by infrared photodissociation (IRPD) spectroscopy in the hydride stretch range and quantum chemical calculations at the ωB97X-D/cc-pVTZ level to characterize the microsolvation of this prototypical aromatic ethylamino neurotransmitter radical cation in a nonpolar solvent. Two types of structural isomers exhibiting different interaction motifs are identified for the TRA(+)-N2 dimer, namely the TRA(+)-N2(H) global minimum, in which N2 forms a linear hydrogen bond (H-bond) to the indolic NH group, and the less stable TRA(+)-N2(π) local minima, in which N2 binds to the aromatic π electron system of the indolic pyrrole ring. The IRPD spectrum of TRA(+)-(N2)2 is consistent with contributions from two structural H-bound isomers with similar calculated stabilization energies. The first isomer, denoted as TRA(+)-(N2)2(2H), exhibits an asymmetric bifurcated planar H-bonding motif, in which both N2 ligands are attached to the indolic NH group in the aromatic plane via H-bonding and charge-quadrupole interactions. The second isomer, denoted as TRA(+)-(N2)2(H/π), has a single and nearly linear H-bond of the first N2 ligand to the indolic NH group, whereas the second ligand is π-bonded to the pyrrole ring. The natural bond orbital analysis of TRA(+)-(N2)2 reveals that the total stability of these types of clusters is not only controlled by the local H-bond strengths between the indolic NH group and the N2 ligands but also by a subtle balance between various contributing intermolecular interactions, including local H-bonds, charge-quadrupole and induction interactions, dispersion, and exchange repulsion. The systematic spectral shifts as a function of cluster size suggest that the larger TRA(+)-(N2)n clusters with n = 3-6 are composed of the strongly bound TRA(+)-(N2)2(2H) core ion to which further N2 ligands are weakly attached to either the π electron system or the indolic NH proton by stacking and charge-quadrupole forces.


Assuntos
Neurotransmissores/química , Nitrogênio/química , Triptaminas/química , Cátions/química , Dimerização , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Isomerismo , Ligantes , Modelos Moleculares , Teoria Quântica , Espectrofotometria Infravermelho
19.
J Phys Chem A ; 117(39): 9785-93, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23472841

RESUMO

We report on the photodissociation spectrum of protonated naphthalene(+)-argon complexes (NpH(+)-Ar) recorded by excitation into the first excited singlet electronic state. Unlike previous electronic spectra of the free molecule (NpH(+)), both the α and the ß isomer could be observed for the Ar adducts. Detailed information on the S0 and S1 state of both isomers is provided by quantum chemical calculations. An assignment of observed vibrational bands is proposed based on Franck-Condon simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...